Core 1 Differentiation Questions

7 The volume, $V \,\mathrm{m}^3$, of water in a tank at time t seconds is given by

$$V = \frac{1}{3}t^6 - 2t^4 + 3t^2$$
, for $t \ge 0$

(a) Find:

(i)
$$\frac{\mathrm{d}V}{\mathrm{d}t}$$
; (3 marks)

(ii)
$$\frac{d^2V}{dt^2}$$
. (2 marks)

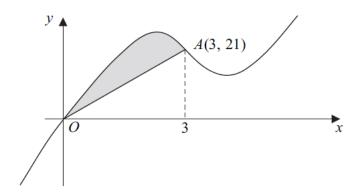
- (b) Find the rate of change of the volume of water in the tank, in $m^3 s^{-1}$, when t = 2.

 (2 marks)
- (c) (i) Verify that V has a stationary value when t = 1. (2 marks)
 - (ii) Determine whether this is a maximum or minimum value. (2 marks)
- 3 A curve has equation $y = 7 2x^5$.

(a) Find
$$\frac{dy}{dx}$$
. (2 marks)

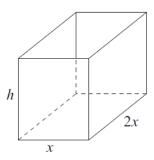
- (b) Find an equation for the tangent to the curve at the point where x = 1. (3 marks)
- (c) Determine whether y is increasing or decreasing when x = -2. (2 marks)

5 The curve with equation $y = x^3 - 10x^2 + 28x$ is sketched below.



The curve crosses the x-axis at the origin O and the point A(3, 21) lies on the curve.

- (a) (i) Find $\frac{dy}{dx}$. (3 marks)
 - (ii) Hence show that the curve has a stationary point when x = 2 and find the x-coordinate of the other stationary point. (4 marks)
- 5 The diagram shows an **open-topped** water tank with a horizontal rectangular base and four vertical faces. The base has width x metres and length 2x metres, and the height of the tank is h metres.



The combined internal surface area of the base and four vertical faces is $54 \, \text{m}^2$.

- (a) (i) Show that $x^2 + 3xh = 27$. (2 marks)
 - (ii) Hence express h in terms of x. (1 mark)

(iii) Hence show that the volume of water, $V \, \mathrm{m}^3$, that the tank can hold when full is given by

$$V = 18x - \frac{2x^3}{3} \tag{1 mark}$$

- (b) (i) Find $\frac{dV}{dx}$. (2 marks)
 - (ii) Verify that V has a stationary value when x = 3. (2 marks)
- (c) Find $\frac{d^2V}{dx^2}$ and hence determine whether V has a maximum value or a minimum value when x=3. (2 marks)
- 4 A model helicopter takes off from a point O at time t = 0 and moves vertically so that its height, y cm, above O after time t seconds is given by

$$y = \frac{1}{4}t^4 - 26t^2 + 96t$$
, $0 \le t \le 4$

(a) Find:

(i)
$$\frac{dy}{dt}$$
; (3 marks)

(ii)
$$\frac{d^2y}{dt^2}$$
. (2 marks)

- (b) Verify that y has a stationary value when t = 2 and determine whether this stationary value is a maximum value or a minimum value. (4 marks)
- (c) Find the rate of change of y with respect to t when t = 1. (2 marks)
- (d) Determine whether the height of the helicopter above O is increasing or decreasing at the instant when t = 3. (2 marks)

Core 1 Differentiation Answers

7(a)(i)	dV = 5 - 3	M1		One term correct unsimplified
	$\frac{\mathrm{d}V}{\mathrm{d}t} = 2t^5 - 8t^3 + 6t$	A1		Further term correct unsimplified
	G.	A1	3	All correct unsimplified (no + c etc)
(ii)	d^2V 10.4 24.2	M1		One term FT correct unsimplified
(11)	$\frac{\mathrm{d}^2 V}{\mathrm{d}t^2} = 10t^4 - 24t^2 + 6$	A1	2	CSO. All correct simplified
(b)	a , dV	N (1		
(D)	Substitute $t = 2$ into their $\frac{dt}{dt}$	M1		
	Substitute $t = 2$ into their $\frac{dV}{dt}$ (= 64 - 64 + 12) = 12	A1	2	CSO. Rate of change of volume is
	($12\text{m}^3 \text{ s}^{-1}$
() (!)	$\mathrm{d}V$			dV
(c)(1)	$t = 1 \Rightarrow \frac{\mathrm{d}V}{\mathrm{d}t} = 2 - 8 + 6$	M1		Or putting their $\frac{dV}{dt} = 0$
	$= 0 \Rightarrow$ Stationary value	A1	2	CSO . Shown to $= 0$ AND statement
	- 0 → Stationary value	AI	2	(If solving equation must obtain $t = 1$)
	1277			Sub $t = 1$ into their second derivative or
(ii)	$t=1 \Rightarrow \frac{\mathrm{d}^2 V}{\mathrm{d}t^2} = -8$	M1		equivalent full test.
	GI.			•
	Maximum value	A1√	2	Ft if their test implies minimum
	Total		11	

3(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -10x^4$	M1 A1	2	kx^4 condone extra term Correct derivative unsimplified
(b)	When $x = 1$, gradient = -10	B1√		FT their gradient when $x = 1$
	Tangent is	M1		Attempt at y & tangent (not normal)
	y-5 = -10(x-1) or $y + 10x = 15$ etc	A1	3	CSO Any correct form
(c)	When $x = -2$ $\frac{dy}{dx} = -160$ (or < 0)	B1√		Value of their $\frac{dy}{dx}$ when $x = -2$
	$(\frac{\mathrm{d}y}{\mathrm{d}x} < 0 \text{ hence})$ y is decreasing	E1√	2	ft Increasing if their $\frac{dy}{dx} > 0$
	Total		7	

5(a)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 20x + 28$	M1 A1 A1	3	One term correct Another term correct All correct (no + c etc)
(ii)	Their $\frac{dy}{dx} = 0$ for stationary point $(x-2)(3x-14) = 0$ $\Rightarrow x = 2$ or $x = \frac{14}{3}$	M1 m1 A1 A1	4	Or realising condition for stationary pt Attempt to solve using formula/ factorise Award M1, A1 for verification that $x = 2 \Rightarrow \frac{dy}{dx} = 0 \text{ then may earn m1 later}$

$\frac{dV}{dx} = 18 - 2x^{2}$ Sub $x = 3$ into their $\frac{dV}{dx}$ Shown to equal 0 plus statement that this implies a stationary point if verifying $\frac{d^{2}V}{dx^{2}} = -4x$ $(= -12)$ $\frac{d^{2}V}{dx^{2}} < 0$ at stationary point \Rightarrow maximum			solving
Sub $x = 3$ into their $\frac{dV}{dx}$ Shown to equal 0 plus statement that this implies a stationary point if verifying	A1 M1 A1	2	All correct unsimplified $18 - 6x^2/3$ Or attempt to solve their $\frac{dV}{dx} = 0$ CSO Condone $x = \pm 3$ or $x = 3$ if solving
Sub $x = 3$ into their $\frac{dV}{dx}$ Shown to equal 0 plus statement that this implies a stationary point if verifying	A1 M1 A1	2	All correct unsimplified $18 - 6x^2/3$ Or attempt to solve their $\frac{dV}{dx} = 0$ CSO Condone $x = \pm 3$ or $x = 3$ if solving
Sub $x = 3$ into their $\frac{dV}{dx}$ Shown to equal 0 plus statement that this	A1 M1		All correct unsimplified $18 - 6x^2/3$ Or attempt to solve their $\frac{dV}{dx} = 0$ CSO Condone $x = \pm 3$ or $x = 3$ if
Sub $x = 3$ into their $\frac{dV}{dx}$	A1 M1		All correct unsimplified $18 - 6x^2/3$ Or attempt to solve their $\frac{dV}{dx} = 0$
	A1	2	All correct unsimplified $18 - 6x^2/3$
$\frac{\mathrm{d}V}{\mathrm{d}x} = 18 - 2x^2$		2	
		1	
$V = 2x^{2}h = 18x - \frac{1}{3}$	БІ	1	brackets
$x = 2x^2h = -18x = 2x^3$	R1	1	AG (watch fudging) condone omission of
$h = \frac{27 - x^2}{3x}$ or $h = \frac{9}{x} - \frac{x}{3}$ etc	B1	1	Any correct form
$\Rightarrow x^2 + 3xh = 27$	A1	2	AG CSO
$2x^2 + 2xh + 4xh$ (= 54)	M1		Attempt at surface area (one slip)
	$2x^{2} + 2xh + 4xh (= 54)$ $\Rightarrow x^{2} + 3xh = 27$ $h = \frac{27 - x^{2}}{3x} \text{or} h = \frac{9}{x} - \frac{x}{3} \text{ etc}$ $V = 2x^{2}h = 18x - \frac{2x^{3}}{3}$		

4(a)(i)	$t^3 - 52t + 96$	M1		one term correct
		A1		another term correct
		A1	3	all correct (no + c etc)
(ii)	$3t^2 - 52$	M1		ft one term correct
` '		A1√	2	ft all "correct"
		1111	_	Trum Contect
	dv			dv
(b)	$\frac{dy}{dt} = 8 - 104 + 96$	M1		substitute $t = 2$ into their $\frac{dy}{dt}$
	$= 0 \implies$ stationary value	A1		CSO; shown = $0 + \text{statement}$
	Substitute $t = 2$ into $\frac{d^2 y}{dt^2}$ $(= -40)$	N/1		any appropriate test $a = a'(1)$ and $a'(2)$
	Substitute $t = 2$ into $\frac{1}{dt^2}$ $(= -40)$	M1		any appropriate test, e.g. $y'(1)$ and $y'(3)$
	12			
	$\frac{d^2 y}{dt^2} < 0 \implies \text{max value}$	A1	4	all values (if stated) must be correct
	$\mathrm{d}t^2$	711		air varies (ir stated) mast be correct
	Substitute $t = 1$ into their dy	3.61		$dy = d^2y$
(c)	Substitute $t = 1$ into their $\frac{dy}{dt}$	M1		must be their $\frac{dy}{dt}$ NOT $\frac{d^2y}{dt^2}$
				Gi Gi
	Rate of change = $45 (\text{cm s}^{-1})$	A1√	2	ft their $y'(1)$
'		1	1	1

(d)	Substitute $t = 3$ into their $\frac{dy}{dt}$	M1		interpreting their value of $\frac{dy}{dt}$
	(27-156+96=-33<0)			
	\Rightarrow decreasing when $t = 3$	E1√	2	allow increasing if their $\frac{dy}{dt} > 0$
	Total		13	